If it's not what You are looking for type in the equation solver your own equation and let us solve it.
x^2+2x-0.8=0
a = 1; b = 2; c = -0.8;
Δ = b2-4ac
Δ = 22-4·1·(-0.8)
Δ = 7.2
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(2)-\sqrt{7.2}}{2*1}=\frac{-2-\sqrt{7.2}}{2} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(2)+\sqrt{7.2}}{2*1}=\frac{-2+\sqrt{7.2}}{2} $
| 6c-7=3c+2 | | 2(s+9)-52=90-12s | | 19x=+16=282 | | 22-7z=5z-2 | | 6y+15=7y+3 | | 9h+5=89 | | 6z=32 | | 4y-12=49 | | 11y=35 | | 33-x=x+3 | | (m+10)=4(m-15)+20 | | 5=p/3+20 | | 40/x=-10 | | 51+x=-72 | | u/7-13=-2 | | 3(2(2x+3)+2x+3)=477 | | 2(2a+11)=4a+38 | | 0=12+3(x-5) | | -2(k-18)=2 | | 2(6x+9)=477 | | 20=8+3(z=2) | | 92x-47=13 | | 4=7(y-3) | | 2(2(2x+3)+2x+3)=477 | | -4=5(n-2) | | 4y-40=112 | | 15y=6=26 | | -5(2+c)=10 | | 0.84x=16 | | 7n+12=3n+8n | | 4y+4=2y+1 | | x+168x=180 |